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Background
Rotaviruses, the most common aetiology of pediatric 
gastroenteritis (GE), remain the leading cause of infant 
death from diarrhoea worldwide, with approximately 
200,000 deaths in 2016, the vast majority occurred in sub-
Saharan Africa and Asia [1]. Rotaviruses cause watery 
diarrhoea that induces severe dehydration, resulting in 
acute hydro-electrolytic disorders and undernutrition, 
especially in developing countries [2]. To help reverse 
the trend in deaths from rotavirus GE, the WHO recom-
mended in 2009 the introduction of routine rotavirus 
vaccination into the expanded immunization programs 
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Abstract
Background  Rotavirus gastroenteritis is one of major causes of death in infants, particularly in sub-Saharan Africa. 
In the Central African Republic (CAR), sentinel surveillance of rotavirus gastroenteritis was established in 2011. In this 
study, we assessed the burden of rotavirus gastroenteritis and identified rotavirus strains circulating in CAR during 
2011–2021.

Methods  Stool samples were collected from < 5-year-old children with diarrhoea according to WHO criteria, at the 
sentinel site in Bangui, CAR. Samples were screened for group A rotavirus antigen by EIA. RNA was extracted from all 
EIA-positive samples which were subjected to genotyping using a semi nested RT-PCR assay.

Results  From 2011 to 2021, 1855 stool samples were collected and 854 (46.0%) were positive for rotavirus by EIA. 
Genotypes were obtained from 77.3% (660/854) EIA positive samples. Of these 660 samples, genotypes funds were: 
G1 (35.4%) and G2 (26.6%) for VP7, and P[6] (42.7%) and P[8] (35.6%) for the VP4 gene. The most frequent genotype 
combinations were G1P[8], 19.3% and G1P[6], 15.0%.

Conclusion  This study reports the prevalence of rotavirus genotypes that circulated for ten years, providing a 
pre-vaccine baseline data genotype estimate for rotavirus gastroenteritis sentinel surveillance in the Central African 
Republic.

Clinical trial number  Not applicable.
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in all countries [3]. Currently, four effective oral vaccines, 
containing live attenuated rotavirus, are used: the mon-
ovalent Rotarix vaccine (GSK Biologicals, Belgium), and 
pentavalent RotaTeq vaccine (Merck-Co., USA) are both 
used routinely worldwide. In addition, two rotavirus vac-
cines produced in India, Rotavac™, RV1-116E (Bharat 
Biotech) and Rotasil™, RV5 (Serum Institute of India) 
have been prequalified by WHO [4–6]. Prior to the intro-
duction of the first two vaccines, the number of deaths 
from rotavirus GE globally was more than 600,000 per 
year worldwide [7]. Today, more than 125 countries have 
introduced the vaccine into national vaccination pro-
grams [8].

Rotaviruses are double stranded, segmented RNA 
viruses belonging to Sedoreoviridae family [9]. Their 
genome contains 11 segments, giving them great genetic 
variability [10]. Rotaviruses are classified into nine 
groups from A to I, group I being the most recent [11, 
12]. Among these nine groups, four are pathogenic for 
humans namely: A, B, C, and H [11, 13, and 14]. Group 
A RV is responsible for at least 90% of RV infections in 
humans [13, 15]. RVA genotypes are defined by the gly-
coprotein VP7 antigens (genotype G) and protease-sen-
sitive VP4 (genotype P) [13]. There are currently 42 RVA 
genotype G and 58 RVA genotype P that have been iso-
lated from humans and animals [16, 17].

The Central African Republic (CAR) established rou-
tine surveillance of rotavirus GE in 2011 for all children 
under 5 years of age with GE at the sentinel site, the Pedi-
atric University Hospital Center of Bangui (PUHCB), the 
largest paediatric referral hospital in the country [18]. 
This surveillance was supported by the Renforcement de 
la Surveillance en Afrique Centrale (SURVAC) project, in 
collaboration with the Centers for Disease Control and 
Prevention (CDC) and WHO. The National Laboratory 
for rotavirus GE is hosted at the Instiut Pasteur de Ban-
gui (IPB) within Enteric Viruses and Measles Laboratory 
(EVML). CAR is a developing country and prone to many 
political crises that have led the population to find refuge 
in Internal Displaced Population (IDP) camps. This cre-
ates and exacerbates the precarious level of hygiene, and 
de facto weakens the health status of children, especially 
those under 5 years of age who are at higher risk of suf-
fering from serious forms of water-borne diseases includ-
ing rotavirus GE.

Previous studies on rotavirus GE surveillance in CAR 
showed that the prevalence of rotavirus infection was 
40% during 2008, of which G1 and P[8] genotypes were 
dominant [19], 47% during October 2011-September 
2013 with G2 and P[6] as the predominant genotypes 
[18] and 45% during 2014–2016 when G1 and P[8] geno-
types predominated [20].

To date, rotavirus vaccine has not been routinely intro-
duced in CAR. The objective of this study is to assess the 

burden of rotavirus GE and identify rotavirus strains cir-
culating in CAR during 2011–2021, ten years after estab-
lishment of the sentinel surveillance of rotavirus GE and 
to support decision to introduce rotavirus vaccine in the 
national immunization program.

Materials and methods
Sample collection
Stool samples were collected between October 2011 and 
December 2021 from < 5-year-old children admitted with 
GE (acute or chronic) according to the WHO case defini-
tion for rotavirus GE [21] at the sentinel site, the PUHCB.

Study population
Male or female children aged less than 5 years, who were 
hospitalized for acute GE (≥ 3 looser than normal stools 
per day with or without ≥ 2 episodes of vomiting within 
24  h), were included as suspected cases. Subjects were 
excluded if the admitting diagnosis at the site did not 
include GE, or if the subject developed GE longer than 
12  h following hospitalization (possible nosocomial 
infection). Enrolment was sequential and children hospi-
talized more than once were enrolled as new subjects on 
each occasion.

Rotavirus detection
Stool samples were collected, and fecal suspensions were 
tested by EIA at the sentinel site laboratory for group A 
rotavirus antigen with the commercial rotavirus Pros-
pect® Rotavirus Kit, (Oxoid Ltd, Basingstoke, United 
Kingdom) according to the manufacturer’s instructions. 
The ProSpecT™ Rotavirus EIA kit exhibited 75% sen-
sitivity and 100% specificity in a NIH study performed 
at 2013 [22], as compared with 100% sensitivity and 
99.2% specificity as reported by Oxoid, Ltd [23]. The 
kits were provided by CDC (2011–2015) and WHO/
AFRO (2015-present). The samples were then shipped 
to the national laboratory at IPB for EIA quality control 
(QC), performed on 10% of specimens, and for molecular 
testing.

Rotavirus EIA-positive samples were subjected to RT-
PCR assay for genotyping according to the WHO labo-
ratory manual [24]. Double-stranded RNA (dsRNA) was 
extracted from fecal suspensions of rotavirus EIA-pos-
itive samples using a QIAamp viral RNA mini kit (Qia-
gen, Hilden, Germany) according to the manufacturer’s 
instructions. The extracted dsRNA was subject to G- and 
P-typing by multiplex reverse transcription-polymerase 
chain reaction (RT-PCR) using the QIAGEN One-Step 
RT-PCR kit with type-specific primers as described pre-
viously [25].

Consensus primers VP7Rdeg and 9CON1-L were used 
in the first-round RT-PCR (1 cycle: 42  °C x 30  min, 1 
cycle: 95° x 15 min, 35 cycles: 94 °C x 30 s; 42 °C x 30 s; 
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72 °C x 45 s; 72 °C x 7 min) to amplify the full-length VP7 
gene (1,062  bp); dsDNA was used in the second-round 
PCR for G-typing (30 cycles: 95 °C x 1 min; 42 °C x 1 min; 
72 °C x 1 min) with primer set 9T-1 (G1), 9T-2 (G2), 9T-3 
(G3), 9T-4 (G4), 9T-9B (G9), G12S [26].

For P-typing, consensus primers Con2 and Con3 were 
used in a first-round RT-PCR (1 cycle: 42 °C x 30 min, 1 
cycle: 95° x15min, 30 cycles: 95 °C x 1 min; 42 °C x 1 min; 
72 °C x 1 min and 72 °C x 7 min) to amplify the 876 bp 
of the VP4 gene, and the second-round PCR (30 cycles) 
used primer set 1T-1 (P[8]), 2T-1 (P [4]), 3T-1 (P[6]), 
4T-1 (P [9]), 5T-1 (P [10]) [26, 27].

All PCR products were analyzed by electrophoresis 
in 1.5% agarose gels, in Tris-borate- EDTA (TBE) buffer 
along with a 100-bp and 50 bp DNA ladders and visual-
ized by UV transillumination after staining with gel red.

Data analysis
All statistical analysis was performed with the EPI-Info 
version 3.5.4 software (CDC Atlanta, USA) [28]. All cate-
gorical variables (Sociodemographic and clinical charac-
teristics data, EIA results data and genotypes data) were 
summarized as proportions, and significance of their dif-
ference in distribution with the outcome was assessed 
using Pearson’s chi-square and Fisher test at 5% signifi-
cance level.

Results
From 2011 to 2021, 1855 stool samples were collected 
from GE children aged 0–59 months, and 854 (46.0%) 
were positive for rotavirus by EIA. The average case age 
was 8.75 months (standard deviation 7.04, median age 7 
months, age range 0–59 months). The sex ratio was 1.4 
(1074/781). These results are not statistically significant 
(P = 0.07) because the mode of transmission of the dis-
ease is fecal-oral and can affect all children regardless of 
sex.

The most affected age group was < 6 months with 358 
EIA positives for686 included corresponding to 52.2% 
rotavirus positive rate, followed by age group 6–11 
months with 423 EIA positive of 945 included children 
(44.7%) (Fig.  1). These data are statistically significant 
(P = 0.001) because the younger the children, the less 
developed their immune system is and the more at risk 
they are of developing the disease.

Approximately 10% of the children included had a 
critical clinical picture combining severe dehydration 
(n = 182/1855, 9.81%), severe vomiting (n = 191/1855, 
10.30%) and a state of unconscious lethargy 
(n = 192/1855, 10.30%). It should also be noted that 2.5% 
of the children presented severe diarrhea with a stool fre-
quency greater than 5/24 h. Lethargy (P = 0.18) dehydra-
tion (P = 0.25) are not statistically significant because they 

Fig. 1  EIA Results by age range, from 2011 to 2021
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are a consequence of the late treatment of children and 
not related to the disease itself (Table 1).

Rotavirus infection was prevalent throughout the year, 
but was more common from November to March, with a 
high peak in February (Fig. 2). Most GE cases (83%) origi-
nated from Health Region 7(HR7), the capital city Ban-
gui, where PUHB is located.

Genotyping results show that the most frequent geno-
type combinations were: G1P[8] 19.3% (165/854), G1P[6] 
15.0% (128/854), G2P[6] 13.0% (110/854), G12P[6] 12.2% 
(104/854), and G2P [4] 6.6% (56/854) (Table 2).

The temporal distribution of rotavirus genotype var-
ied over the surveillance period. Genotype G1 was pres-
ent throughout 2012–2021 and circulated alone in 2019. 
G9 circulated from 2012 to 2017 and G8 circulated only 
in 2018. G2 was found every year except in 2019. Gen-
otype G3 emerged in 2016 and was found almost every 

year except in 2019 (Fig. 3). For P genotypes, P [4], P[6] 
and P[8] co-circulated during all the described period 
except that P[8] was not found in 2011 and, P [4] was not 
detected in 2013 and 2019 (Fig. 3).

Samples were sent for quality assurance as follows: (i) 
CDC, Atlanta, USA from 2011 to 2016. A total of 208 
ARN extracts of all positive and non-typable samples 
were sent for the period; (ii) NICD, Johannesburg, South 
Africa, from 2017 to 2019. A total of 58 stool samples 
could be sent.

Discussion
From October 2011 to December 2021, a total of 1855 
stools were collected at the sentinel site of rotavirus sur-
veillance. Of those, 854 (46.0%) were positive by EIA test 
for rotaviruses. Similar proportions have been reported 
from Gabon and Nigeria [29, 30]. This rate was higher 
than in Nigeria (30.6%) and Côte d’Ivoire (27.1%) [30, 
31]. Our rate was like the one described in Sub-Saharan 
Africa before introduction of rotavirus vaccine, where 
more than 40% of cases of acute diarrhea were attributed 
to rotaviruses with a high prevalence in children under 
two years of age [29–33]. Our result showed that rota-
virus are likely to be most common cause of acute GE 
among children under five years of age hospitalized for 
diarrhoeal disease, representing almost half of the cases. 
This can be explained by low levels of hygiene and the 
consumption of contaminated water due to the inacces-
sibility to drinking water for a large part of the population 
[34].

The most common age range affected was 0–11 months 
(87.9%). In Niger, over 80% of children affected by rota-
viruses were 0–11 months of age. Previous studies in 
Sub-Saharan Africa showed that rotavirus diarrhea most 
affected children under 2 years age [28].

Rotavirus GE was more common in dry season, from 
November to March, with a peak in February and a 
second one, less prominent, in August (rainy season). 
In Cote d’Ivoire, a peak was observed in rainy season 
between July and August [25], and a peak was observed 
in dry and cool season in the Niger [35]. Our study was 
similar to several studies from sub-Saharan African 
countries where higher prevalence of rotavirus infection 
was in the dry season, in tropical areas from East to West 
Africa [30, 35].

Most GE cases (83%) originated from Health Region 
7(HR7), the capital city Bangui, where the sentinel site 
is located at PUHB, because it is the national reference 
center for pediatric diseases in the country. It should be 
noted that military and political crises have driven one-
third of the population to seek refuge in Bangui and its 
surrounding areas. As a result, the two-thirds of the pop-
ulation living in rural areas could not be covered by our 
study, even though the exodus of these populations to the 

Table 1  Sociodemographic and clinical characteristics
Carcteristics Frequence P-value

Number %
Sex 0,07
F 781 42
M 1074 58
Age Range 0,001
< 6 months 686 36,98
6–11 months 945 50,94
12–23 months 181 9,76
> 23 months 43 2,32
Province 0,09
SR1 313 16,87
SR7 1542 83,13
Cities 0,001
Bangui 1542 83,13
Begoua 98 5,28
Bimbo 197 10,62
Others cities 18 0,97
Frequency of diarrhea in 24 h 0,002
Mild (< 3 ) 1105 59,57
Moderate (3–5) 703 37,9
Severe (> 5) 47 2,53
Frequency of vomiting in 24 h 0,03
Mild (< 3 ) 873 47,06
Moderate (3–5) 791 42,64
Severe (> 5) 191 10,3
Letargy unconscious 0,18
Yes 192 10,3
No 1581 85,23
Unknown 82 4,47
Dehydration status 0,25
Severe 182 9,81
Moderate 1485 80,05
Shock 7 0,4
Absence 173 9,33
Unknown 8 0,41
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capital could provide a broad view of the circulation of 
RV genotypes in the country. Furthermore, overcrowding 
and poor hygiene conditions, as well as the lack of access 
to drinking water, could promote a high prevalence of RV 
GE in these remote areas, not to mention the difficulties 
of providing good quality food, which would have a sig-
nificant impact on the growth and immunity of children 
living in rural areas, placing them at greater risk. It would 
be advisable to collaborate with medical NGOs work-
ing in pediatric settings in regional hospitals and remote 
districts of the country, in order to have a broader and 
more comprehensive view of the burden of RV GE and 

the actual distribution of genotypes circulating in the 
country.

The WHO recommends that at least 150 stool samples 
be collected annually by the sentinel site as part of rotavi-
rus GE surveillance [21]. These indicators were negatively 
impacted during the years of military-political crises 
between 2014 and 2016, and by the Covid-19 pandemic 
in 2020 (129) and 2021 (135).

From 2011 to 2021, genotyping results showed geno-
types obtained from 660 samples. The frequency of non-
typeable strain (PNT, GNT) with global rate of 22,7%, 
was highly variable from year to year and ranged from 
6% in 2013 to 0.6% in 2021 [18]. As requested by WHO, 

Table 2  Distribution of G and P combination of rotavirus genotypes
G Genotype P Genotype

P[4] (%) P[6] (%) P[8] (%) MIXED P genotypes PNT (%) Total (%)
G1 1 (0.1) 128(15.0) 165(19.3) 4(0.5) 20(2.3) 318(37. 2)
G2 56 (6.6) 110(13.0) 19(2.2) 0 5(0.6) 190(22.4)
G3 5(0.6) 13(1.5) 19(2.2) 4(0.5) 10(1.2) 51(6.0)
G8 3(0.3) 2(0.2) 0 0 0 5(0.5)
G9 1(0.1) 20(2.3) 28(3.3) 0 2(0.2) 51(5.9)
G12 1(0.1) 104(12.2) 10(1.2) 1(0.1) 4(0.5) 120(14.1)
GNT 1(0.1) 15(1.8) 0 1(0.1) 4(0.5) 21(2.5)
MIXED G genotypes 3(0.3) 35(4.1) 40(4.7) 0 20(2.3) 98(11.4)
Total (%) 71(8.2) 427(50.1) 281(32.9) 10(1.2) 65(7.6) 854(100)
GNT: G genotypes untyped. Positives samples by rotavirus EIA, from which PCR products did not show any G genotypes

PNT: P genotypes untyped. Positives samples by rotavirus EIA, from which PCR products did not show any P genotypes

Percentages are reported by the main total (854) as denominator

Fig. 2  Monthly distribution Rotavirus EIA results, from 2011 to 2021. Test ELISA Indetermined (Ind): Value between the equivocal value (threshold value 
minus 0.010) and the threshold value (0.200 plus the optical density value of the negative control)
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samples were sent for quality assurance purposes to dif-
ferent reference laboratories belonging to the global 
rotavirus network as follows: (i) CDC, Atlanta, USA 
from 2011 to 2016. ARN extracts of all positive and non-
typable samples were sent. A total of 208 ARN extracts 
were sent for the period; (ii) NICD, Johannesburg, South 
Africa, from 2017 to 2019. A total of 58 stool samples 
could be sent. During the COVID period (2020–2021) we 
could not find any aircraft company accepting the trans-
port of UN 3373 biological materials to RSA, therefore 
no sample could be sent for QA in 2020 and 2021. The 
high percentage of non-typeables in our study could be 
due to primer targeting limitations that do not cover all 
genotypes. It would be important to characterize these 
non-typeables by sequencing methods to determine 
genotypes missed by the usual genotyping method. This 
could have an impact on the detection of new genotypes 
or genotypic combinations that have circulated in the 
country, as was the case in India in a study conducted in 
2009, where a rare G8 genotype was identified by molec-
ular characterization of non-typeables [36].

Rotavirus genotype distribution showed that the most 
frequent G genotypes are G1 with 318 (37.2%) strains 
and G2 with 190 (22.2%) strains; and most common P 
genotypes were P[6] and P[8] with 427 (50.0%) and 281 
(32.9%), respectively. Our study’s results were similar 
to the globally common G genotype detected in several 
countries (Mozambique, Nigeria, Angola) during the 
same period [30, 33, 37]. Our results contrasted with 
those of a Kenyan study where G9 (50.9%) was most 

represented G genotypes, followed by G1 (26.8); G2 rep-
resented only 0.6% of all G genotypes reported [32]. The 
distribution of rotavirus genotypes worldwide and in 
African region differs according to time and space with 
emergence of novel genotypes along with disappearance 
of other genotypes. This distribution in CAR was similar 
to a report from DRC, where G1 genotype and P[6], P[8] 
genotypes were most common in circulation [38].

During our analysis, the most frequent genotype com-
binations were: G1P[8] and G1P[6] representing 19.3% 
and 15.0% respectively, followed by, G2P[6] (13.0%), 
G12P[6] (12.2%), and G2P [4] (6.6%). The G1P[8] geno-
type combination has been commonly associated with 
infections worldwide [39, 40]. These results were similar 
to those found in CAR in 2008 and 2011–2013 [18, 19]. 
The reappearance of the G12 genotype in 2013 [41] coin-
cided with its emergence in some other African countries 
(Ghana, Tunisia, Kenya) [40, 42, 43]. Regarding Rotavi-
rus vaccines, RotaTeq™ include human VP7 (G1-G4) and 
VP4 (P[8]) genotypes, and RotaSIIL® is a live attenuated 
human-bovine reassortant pentavalent RV vaccine con-
taining VP7 genotypes (G1, G2,G3, G4, and G9) and VP4 
genotype (P [5]) of bovine origin [44]. Rotarix®, which is 
G1P[8], would provide homologous protection against 
G1 strains and heterologous protection against G2 
strains. Rotavac™ which is G9P [45], would provide het-
erologous immune protection [6, 38, 46, 47]. Although 
available vaccines do not cover the P[6] genotype that 
circulates predominantly in CAR (43% of P genotypes), 
and the G12 genotype that emerged from 2013 to 2018, 

Fig. 3  a Rotavirus G genotypes strain distribution, from 2011 to 2021. GNT: G genotypes untyped. Positives samples by rotavirus EIA, from which PCR 
products did not show any G genotypes. b: Rotavirus P genotypes strain distribution, from 2011 to 2021. PNT: P genotypes untyped. Positives samples by 
rotavirus EIA, from which PCR products did not show any P genotypes
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it is worth noting that the Rotarix vaccine showed evi-
dence of cross-protection against this genotype, in a 
study conducted in Tanzania from 2013 to 2018 where 
the G3P[6] decreased from 11.2% in 2014 to 4.1% in 2018 
[48]. Rotarix also showed evidence of cross-protection 
against G12P[6] genotypes in Brazil in a study conducted 
in 2010 [49]. This demonstrates that the introduction of 
this vaccine would protect children in CAR during a re-
emergence of the G12 genotype.

Genotypes G1 and G2, representing more than half of 
the G genotypes circulating in CAR, this suggests that in 
any case, children in CAR could be protected from rota-
virus infections if they are immunised with any one of 
these vaccines.

Conclusion
Our study shed light on the evidence regarding the distri-
bution of RV genotypes in CAR over 10 years, from 2011 
to 2021, compared to previous studies conducted in the 
country. We noted between the emergence of the G12 
genotype from 2013 to 2018, the disappearance of the G9 
genotype since 2017 and the circulation of the genotype 
G3 from 2016 until the end of our study. In addition, we 
also observed a constant circulation of Genotypes G1, 
G2, P [4], P[6] and P[8] in the country, with variable pre-
dominance over the years, allowing us to establish evi-
dence on the distribution of RV genotypes in CAR before 
the introduction of routine immunization.

These data will be useful in supporting evidence-based 
decisions towards the introduction of the rotavirus vac-
cine to the National Vaccination Program in the CAR, 
expected in 2025, and will allow the rotavirus surveil-
lance system to assess the impact of vaccination on the 
circulation of different genotypes of rotavirus after vac-
cine introduction in the country.
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